MU-1221

12x AIN (16-bit.) DIO, RS485

Upozornění:

Uži vatelská příručka a její součásti jsou autorským dílem chráněným ustanovením zákona č. 35/1965 Sb. o dílech li terárních, vědeckých a uměleckých (Autorský zákon) ve znění zákona č. 89/1990 Sb., zákona č. 468/1991 Sb., zákona č. 318/1993 Sb., zákona č. 237/1995 Sb. a zákona č. 86/1996 Sb.

Všechna jména a názvy použi té v textu mohou být chráněnými známkami nebo obchodními názvy výrobků příslušných firem.

© 1994÷1998 TEDIA spol. s r. o.

Záruční a pozáruční servis:

TEDIA spol. s r. o., P.O.BOX 40, 312 90 Plzeň 12

telefon: 019 7478168
fax: 019 7478169
hotline: 0603 442786
e-mail: tedia@tedia.cz
internet: http://www.tedia.cz

Obsah

1.1.	Uvodní popis Charakteristika	I - 1
2.3.	Technické parametry A/D převodník Digitální porty Komunikační linka Ostatní údaje	I - 2 I - 2 I - 2 I - 2
3.3.	Instalace modulu Úvod Připojení napájecího zdroje Připojení komunikační linky Digitální vstupy a výstupy Analogové vstupy	I - 4 I - 4 I - 4 I - 4 I - 4
4.1. 4.2. 4.3. 4.4. 4.5.	Popis vnitřní struktury desky Popis A/D převodníku Popis digitálních vstupů a výstupů Popis komunikačních obvodů Konfigurační paměť EEPROM Terminologie	I - 5 I - 5 I - 5 I - 6
5.2.	Základní popis firmware Úvod Popis činnosti Úvodní inicializace Provozní konfigurace	I - 7 I - 7 I - 7 I - 7
6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9.		I - 8 I - 8 I - 8 I - 8 I - 9 I - 9 I - 9
7.1. 7.2. 7.3. 7.4.	Konfigurace modulu Úvod Konfigurace obvodů A/D převodníku Konfigurace snímače studeného konce TC Konfigurace digitálních portů	I - 11 I - 11 I - 13 I - 14
	hy: ha II - tabulky ha III - obrázky	II III

1. Úvod

1.1. Charakteristika

MU-1221 je externí měřicí modul s vysokým rozlišením a disponuje širokou řadou napěťových a termočlánkových rozsahů.

Analogové vstupy modulu jsou realizovány na bázi A/D převodníku Analog Devices AD7711. Veškerou obsluhu převodníku a vstupního multiplexeru zajišťuje procesor Atmel typu AT89C52, ovládaný z PC po komunikační lince pomocí implemetované sady makroinstrukcí.

Instalovaný firmware zajišťuje autonomní měření analogových vstupů podle předprogramovaných požadavků a výsledky ukládá do tabulky umístěné v interní paměti RAM. Při požadavku nadřízeného počítače o vstupní hodnoty jsou předávána data z tabulky, což výrazně ovlivňuje propustnost realizované sítě (komunikace není zatížena čekáním na provedení A/D konverze).

Vnitřní architekturou je deska kompatibilní se stavebnicí MICROUNIT a standardně je implementován komunikační protokol AIBUS-2. Specifikace tohoto protokolu je uvedena ve zvláštní příručce a další text předpokládá její znalost.

Externí modul MU-1221 obsahuje:

- galvanicky oddělené obvody A/D převodníku
- 6 diferenciálních vstupů
- 6 jednoduchých vstupů (S.E.)
- 2 digitální vstupy (s optickou izolací)
- 2 digitální výstupy (OC s optickou izolací)
- čidlo studeného konce termočlánku
- obvody komunikační linky RS485

2. Technické parametry

2.1. A/D převodník

rozlišení: 24 bitů (viz poznámka)

linearita: 21 bitů

počet vstupů: 6 DIF. + 6 S.E.

vstupní napěťové rozsahy: 20mV, 50 mV, 100 mV, 200 mV, 500 mV

termočlánky: typ M $(-200 \sim 100 \, ^{\circ}\text{C})$

 typ T
 $(-200 \sim 400 \, ^{\circ}\text{C})$

 typ J
 $(-200 \sim 1200 \, ^{\circ}\text{C})$

 typ L
 $(-200 \sim 800 \, ^{\circ}\text{C})$

 typ E
 $(-200 \sim 1000 \, ^{\circ}\text{C})$

 typ K
 $(-200 \sim 1300 \, ^{\circ}\text{C})$

typ S $(0 \sim 1700 \,^{\circ}\text{C})$ typ R $(0 \sim 1700 \,^{\circ}\text{C})$ typ B $(50 \sim 1800 \,^{\circ}\text{C})$

typ A $(0 \sim 2500 \,^{\circ}\text{C})$

přesnost napěťových rozsahů: 0,1%

chyba numerické linearizace: typy M, T, J, L, E, K <0.2 °C

typy S, R, B, A <0.5 °C

rozsah teploty studeného konce: 0 ~ 75 °C

ochrana proti přepětí: ±12V (současně všechny vstupy)

±24V (současně max. 5 vstupů)

doba převodu: 240 ms

Firmware modulu pro svou činnost využívá 16-bitové rozlišení (pro zpracování i transfer dat).

2.2. Digitální porty

počet vstupů: 2 (s optickou izolací)

pracovní napětí: 5÷32 Vss. (odolné proti přepólování)
počet výstupů: 2 (OC s optickou izolací)
pracovní napětí: 32V / 0,5A max. (odolné proti přepólování)

2.3. Komunikační linka

typ rozhraní: RS485

typ zapojení: dvouvodičové, galvanicky oddělené

komunikační rychlost: 600 Bd - 115,2 kBd

typ přenosu: podle specifikace AIBUS-2

(8 bitů, 1 stop bit, sudá/lichá parita)

2.4. Ostatní údaje

napájecí napětí: 8÷14V (verze pro 12V)

15÷28V (verze pro 24V)

ochrana proti přepólování: 100V max.

渔

Moduly jsou dodávány ve dvou provedení napájecích obvodů.

3. Instalace modulu

3.1. Úvod

Při výrobě bylo dbáno na dosažení vysoké kvality a spolehlivosti, rovněž byla věnována pozornost důkladné kontrole před expedicí. Aby nedošlo ke snížení jakosti či poškození při instalaci, doporučujeme Vám pečlivě prostudovat tuto příručku a postupovat podle uvedeného návodu.

Vlastní instalace představuje umístění a připevnění modulu, jeho propojení s napájecím zdrojem, připojení kabelu komunikační linky, zapojení analogových a digitálních vstupů/výstupů. Rozmístění kontaktních míst na desce je zakresleno na obrázku Obr.1.

3.2. Připojení napájecího zdroje

Napájení jednotky je řešeno z jediného zdroje; všechna pomocná napětí jsou generována interně DC/DC převodníky.

Při zapojování zdroje je nutné dbát na správnou polaritu a toleranci napětí; v případě nedodržení povolených mezí může dojít k trvalému poškození obvodů modulu; podrobně viz obrázek Obr.1. a tabulka Tab.1.

Rovněž připojení napájecího napětí na jinou ze svorek modulu (např. na svorky linky RS485) může způsobit jeho trvalé poškození.

3.3. Připojení komunikační linky

Komunikační linka je vyvedena na dvojitou šroubovací svorku; při jejím zapojování je nutné dbát na správnou polaritu signálů jinak s modulem nebude navázána komunikace; podrobně viz obrázek Obr.1. a tabulka Tab.2.

3.4. Digitální vstupy a výstupy

Digitální porty jsou zapojeny na šroubovací svorky; zapojení je vyznačeno v tabulce Tab.3. a na obrázku Obr.1.

3.5. Analogové vstupy

Analogové vstupy jsou zapojeny na svorky WAGO; význam jednotlivých signálů je zřejmý ze zapojení na obrázku Obr.2., jejich rozmístění na svorkách je vyznačeno v tabulce Tab.4. a Tab.5. Připojení různých zdrojů signálu k analogový vstupům je naznačeno na obrázku Obr.3.

4. Popis vnitřní struktury modulu

4.1. Popis A/D převodníku

Na desce MU-1221 je instalován A/D převodník Analog Devices, typ AD7711. Tento obvod pracuje na principu $\Sigma\Delta$ modulace, z čehož vyplývají vynikající vlastnosti a stabilita všech parametrů.

A/D převodník pracuje v režimu "Self Calibration", při kterém je zajištěna průběžná kompenzace ofsetu, resp. jeho teplotních a časových změn vyplývajících z vlivu kolísání napájecího napětí apod.

Jednou z výhod převodníků pracujících na principu $\Sigma\Delta$ modulace je potlačení signálů kmitočtu odpovídající frekvenci uvedené v tabulce jako rychlost A/D převodníku včetně vyšších harmonických složek.

V modulu byla z důvodu potlačení rušivých signálů rychlost měření odvozena od frekvence 50Hz; měření jednoho vstupu pak trvá 240 ms.

Časování A/D převodníku nemá vliv na průběh komunikace; pro přenos dat do PC jsou využity poslední naměřené hodnoty uložené v RAM; k jejich aktualizaci dochází na pozadí komunikace.

4.2. Popis digitálních vstupů a výstupů

Deska obsahuje dva logické vstupy a dva logické výstupy.

Vstupy mají charakter plovoucích opticky oddělených portů a jsou určené pro stejnosměrné signály v rozsahu do od 5 do 32V.

Výstupní kanály jsou porty typu "otevřený kolektor - otevřený emitor" s optickou izolací; po resetu (zapnutí napájení nebo "Watchdog") jsou přednastaveny podle konfiguračních dat v paměti EEPROM.

4.3. Popis komunikačních obvodů

Obvody linky RS485 umožňují přenos dat do vzdálenosti 1200m a připojení až 32 zařízení (včetně PC) na linku, k dalšímu rozšíření sítě (větší počet modulů nebo pro rozsáhlé aplikace) lze využít opakovače.

Periferní obvody linky jsou napájeny přímo ze základního zdroje (12V nebo 24V).

4.4. Konfigurační paměť EEPROM

Modul obsahuje paměť EEPROM pro uložení všech konfiguračních dat modulu (adresa a komunikační rychlost, parametry měření vstupů apod.).

Z důvodu dosažení nejvyšší provozní spolehlivosti jsou obvody doplněny konfiguračním spínačem (SW1 - segment "1") pro zablokování obsahu proti možnému přepisu. Je-li tento spínač rozepnutý, lze paměť EEPROM volně programovat a rovněž používat modul v běžném provozu. V případě sepnutého

spínače je technicky znemožněn zápis a modul lze používat s aktuálním nastavením; změnu konfigurace však nelze provést (ani poruchou modulu či vnějším rušením).

4.5. Terminologie

V dalším popisu budou využívány tyto pojmy:

Analogový vstup představuje fyzické rozhraní modulu.

Analogový kanál interní proměnná modulu a její obsah představuje údaj o signálu

na zvoleném vstupu po provedení kalibračního přepočtu.

5. Základní popis firmware

5.1. Úvod

Standardně instalovaný firmware pracuje podle specifikace protokolu **AIB**US-2, jehož popis je uveden ve zvláštní příručce. V této kapitole proto nebudou popisovány obecné vlastnosti, ale pouze obsluha jednotlivých periferií jednotky. Další text se vztahuje k firmware verze 1.00.

5.2. Popis činnosti

Po připojení napájení deska provede interní inicializaci, při níž nastaví své základní pracovní parametry, tzn. přenosovou komunikační rychlost a adresu v závislost na stavu inicializačního spínače, a zpracuje konfigurační data pro A/D převodník. Po ukončení této inicializační fáze deska přechází do vlastního pracovního režimu, v kterém autonomně provádí periodické měření vstupů a obsluhu komunikace. Ovládání modulu probíhá pomocí souboru makroinstrukcí, nazývaných funkcemi. Tyto funkce zajišťují obsluhu digitálních portů, EEPROM, programování parametrů A/D převodníku, přenos naměřených dat atd.

5.3. Úvodní inicializace

Pro úvodní inicializaci slouží DIL spínač SW1; v případě sepnutého segmentu "2" modul pracuje s pevnou adresou "0" a přenosovou rychlostí 9600Bd. V tomto režimu jsou dostupné všechny funkce modulu, předvolené hodnoty komunikačních parametrů (v EEPROM) jsou však ignorovány.

K nastavení modulu lze využít dodávaný software nebo použít vlastního programového vybavení pro přepis obsahu EEPROM; význam jednotlivých konstant EEPROM je popsán ve zvláštní kapitole.

Důležité upozornění:
Stav incializačního spínače SW1-2 je detekován pouze při zapnutí modulu.
Změny v EEPROM paměti jsou modulem akceptovány až po novém zapnutí modulu.

Moduly jsou nastaveny od výrobce na adresu 1 a komunikační rychlost 9600Bd.

5.4. Provozní konfigurace

Po nastavení adresy a komunikační rychlosti lze konfigurovat jednotlivé periferie modulu; k tomuto kroku lze využít program standardně dodávaný s modulem.

6. Popis periferií

6.1. Úvod

Popis v následujících odstavcích vychází ze specifikace periferií podle referenční příručky k protokolu AIBUS-2.

6.2. Seznam periferií

Externí periferie s přímým přístupem:

ED0 analogový kanál "0"

ED1 analogový kanál "1"

ED11 analogový kanál "11"

ED16 čidlo studeného konce termočlánku

ED64 DIO porty

Interní periferie s přímý přístupem:

ID0 stavový registr

Interní adresovatelné periferie:

IAO konfigurační EEPROM

Interní periferie - speciální registry:

SP0, SP1 typ modulu SP2 verze firmware

6.3. ED0 - analogový kanál 0

Externí periferie s přímým přístupem ED0 obsahuje data prvního vstupního analogového kanálu; data jsou přenášena v předdefinovaném formátu s plovoucí desetinnou čárkou.

Periferie má význam jenom pro operaci čtení; zapisovaná data jsou ignorována.

Konfigurace vstupních rozsahů je uvedena ve zvláštní kapitole.

6.4. ED1 ~ ED11

Externí periferie s přímým přístupem ED1~ED11 obsahují data vstupních analogových kanálů 1-11; formát dat a obsluha je totožná s periferií ED0.

6.5. ED16 - čidlo studeného konce TC

Externí periférie s přímým přístupem ED16 obsahuje data čidla studeného konce termočlánku.

Data jsou přenášena buď v celočíselném tvaru údaje A/D převodníku nebo ve formátu s plovoucí desetinnou čárkou ve stupních Celsia (viz. kapitola 7.3.).

Periférie má význam jenom pro operaci čtení, zapisovaná data jsou ignorována.

6.6. ED64 - DIO porty

Externí periferie s přímým přístupem ED64 obsahuje data 32-bitového řadiče digitálních vstupů a výstupů.

Formát dat je uveden ve dvou tabulkách postupně pro vstupy a výstupy.

00 _H	00 _H	00 _H	000000	DIN1	DIN0
D31D24	D23D16	D15D8	D7D2	D1	D0
				DO1	DO0
				כ	000

Data jsou standardně přenášena v pozitivním kódu ("H" představuje aktivovaný vstup nebo výstup) v rozsahu 32-bitového čísla; každý bit představuje stav jednoho portu. Změnou konfigurace modulu však lze však zvolit inverzi aktivní úrovně.

Periferie má význam pro operaci čtení (čten stav digitálních vstupů) i zápis (ovládán stav digitálních výstupů). Nevyužité bity vstupního registru jsou trvale nulovány, nevyužité bity výstupního registru jsou pak modulem ignorovány.

6.7. ID0 - stavový registr modulu

Interní periferie s přímým přístupem ID0 obsahuje data stavového registru modulu. Formát dat je uveden v tabulce.

00 _H	00 _H	00 _H	Status Registr
D31D24	D23D16	D15D8	D7D0

Registr má platná data pouze v oblasti globálních příznaků, které jsou obsaženy každou jednotkou (viz popis protokolu); žádný z lokálních příznaků není využit.

Periferie má význam pro operaci čtení (čten stav příznaků) i zápis (nulován nebo nastavován stav příznaků).

Status registr je zahrnut jako samostatný znak každé zprávy; podrobně viz specifikace komunikačního protokolu.

6.8. IA0 - konfigurační paměť EEPROM

Interní adresovatelná periferie IA0 představuje konfigurační paměť modulu. Platný rozsah adresového prostoru je 0~95; požadavek o operaci mimo tento rozsah není akceptován a funkce vrací neplatná data. Tento stav je signalizován nastavením odpovídajícího příznaku ve Status registru. Paměť obsahuje 8-bitová data.

Oproti standardnímu formátu jsou z důvodu vyšší spolehlivosti data i adresa přenášeny v kódovaném tvaru; nižší a vyšší byte adresy nebo dat je vždy zdvojen.

Situace při operaci "zápis dat" je znázorněna v tabulce; při čtení je stav analogický.

EED7EED0	EED7EED0	EEA7EEA0	EEA7EEA0	
D31D24	D23D16	D15D8	D7D0	

6.9. SP0~2 - speciální registry

Modul obsahuje tři speciální registry, které obsahují:

SP0 první čtyři znaky typového označení modulu SP1 druhé čtyři znaky typového označení modulu

SP2 čtyři znaky označení verze modulu Přenášená data mají tvar ASCII řetězce o délce 4 znaky. Příklad: SP0 + SP1 + SP2 ~ "MU-1" + "221 " + "1.00"

7. Konfigurace modulu

7.1. Úvod

Popis v následujících odstavcích vychází ze specifikace periferií podle referenční příručky k protokolu AIBUS-2. Veškerá konfigurace modulu se provádí modifikací dat v konfigurační paměti EEPROM.

Modul MU-1221 má tyto konfigurovatelné obvody (viz tabulka Tab.6.):

- vstupy A/D převodníku (registry SCAN_0 ~ SCAN_11)
- čidlo teploty studeného konce (registry Ctrl_TC, TC_K, TC_Q)
- digitální vstupní porty (registr Ctrl_DI)
- digitální výstupní porty (registry Init_DO, Ctrl_DO)

Mimo těchto registrů obsahuje konfigurační pamět ještě další tři globální registry:

- stavový registr (StatusReg)
- registr komunikační adresy modulu (COM_ADR)
- registr komunikační rychlosti (COM_BD) (viz tabulka Tab.7.)

Význam StatusReg a COM_ADR je uveden v referenční příručce protokolu AIBus-2.

图

Celou konfiguraci modulu lze provést bez přesné znalosti interních registrů uživatelským programem dodávaným společně s modulem.

7.2. Konfigurace obvodů A/D převodníku

Obvody A/D převodníku mají vyhrazeno 12-vstupních analogových kanálů; každý kanál lze nezávisle konfigurovat pomocí řídicího registru SCAN_x.

Struktura registru je následující:

				١	١		
D7	D6	D5	D4	D3	D2	D1	D0

N pracovní rozsah 0 20 mV 1 50 mV 2 100 mV 3 200 mV4 500 mV 5 TC typ M TC typ T 6 7 TC typ J 8 TC typ L

9	TC typ E
10	TC typ K
11	TC typ S
12	TC typ R
13	TC typ B
14	TC typ A

Protože modul vždy měří všech 12 analogových kanálů a doba převodu trvá 240ms (rychlost převodníku je odvozena od vnitřního kmitočtu 50Hz, viz kapitola Popis vnitřních obvodů modulu), celá měřicí smyčka je vykonána v čase 2.88~3.12 s.

Příklad:

SCAN_0	$= 00_{H}$	(20 mV)
SCAN_1	$= 02_{\rm H}$	(100 mV)
SCAN_2	$= 04_{\rm H}$	(500 mV)
SCAN_3	$= 06_{\rm H}$	(TC, typ T)
SCAN_10	$= 07_{\rm H}$	(TC, typ J)
SCAN_11	$= 08_{\rm H}$	(TC, typ L)

Modul je nastaven pro měření 12 analogových kanálů s těmito parametry:

AIN_0	kanál s napěťovým rozsahem 20 mV
AIN_1	kanál s napěťovým rozsahem 100 mV
AIN_2	kanál s napěťovým rozsahem 500 mV
AIN_3	kanál s termočlánkem typu T
AIN_10	kanál s termočlánkem typu J
AIN_11	kanál s termočlánkem typu L

Pro měření je nutno napěťové rozsahy zkalibrovat, konfigurační paměť proto obsahuje dvě kalibrační konstanty U_K a U_Q. Výpočet kalibrovaného údaje je interně prováděn podle vztahu:

$$AD_{KAL} = (AD_N + U_Q) \times U_K$$

kde

 AD_{N} 16-bitová hodnota A/D převodníku

U_Q, U_K kalibrační konstanty

Kalibrační konstanty U_Q a U_K jsou definovány vztahy:

$$U_Q = 32768 - AD_0$$

 $U_K = (10000 \times AD_{UK})/(AD_K - AD_0)$

kde

 ${
m AD_{UK}}$ požadovaná hodnota A/D převodníku pro napětí ${
m U_K}$ ${
m AD_o}$ hodnota A/D převodníku při zkratovaném vstupu

 AD_K hodnota A/D převodníku při napětí U_K Konstanty AD_0 a AD_{UK} jsou definovány při $U_Q=0$ a $U_K=1$.

图

Modul je již od výrobce zkalibrován. Pokud je potřeba provést novou kalibraci napětových rozsahů, lze toto učinit bez přesné znalosti interních registrů uživatelským programem dodávaným společně s modulem.

7.3. Konfigurace snímače teploty studeného konce TC

Snímač teploty studeného konce je realizován polovodičovým čidlem s lineární převodní charakteristikou teplota/napětí připojeným na samostatný vstup A/D převodníku AD7711.

Pro měření teploty je nutno teplotní čidlo zkalibrovat, konfigurační paměť proto obsahuje dvě kalibrační konstanty TC_K a TC_Q. Výpočet teploty je interně prováděn podle vztahu:

Teplota =
$$(AD_T + TC_Q) \times TC_K$$

kde

AD_T 16-bitová hodnota A/D převodníku

TC_Q, TC_K kalibrační konstanty

Kalibrační konstanty TC_Q a TC_K jsou definovány vztahy:

$$TC_Q = 32768 - AD_{R0}$$

 $TC_K = (100000 \times T_K)/(AD_{TK} - AD_{R0})$

kde

T_K teplota okolí čidla ve stupních Celsia

 $\mathrm{AD}_{\mathrm{R0}}$ hodnota A/D převodníku při zkratovaném vstupu

 ${
m AD}_{
m TK}$ hodnota A/D převodníku z teplotního čidla při teplotě ${
m T}_{
m K}$

Řídící registr Ctrl_TC určuje aktivaci funkce měření teploty studeného konce a volbu přepočtu hodnoty.

Struktura registru je následující:

	AKT	0	0	0	0	0	0	TC
Ī	D7	D6	D5	D4	D3	D2	D1	D0

AKT aktivace měření

teplotní čidlo není měřeno

1 teplotní čidlo je měřeno

TC volba přepočtu

0 výpočet v dílcích A/D převodníku

1 výpočet ve stupních Celsia

Důležité upozornění:

Při zvolení termočlánkového rozsahu na některém analogovém vstupu je nutno řídícím registrem Ctrl_TC povolit měření teplotního čidla ve stupních Celsia.

Ze Teplotní čidlo je již od výrobce zkalibrováno. Je-li třeba provést novou kalibraci, lze tak učinit bez přesné znalosti interních registrů uživatelským programem dodávaným společně s modulem.

7.4. Konfigurace logických portů

Pro konfiguraci logických portů jsou vyhrazeny tři registry; Init_DO, Ctrl_DI a Ctrl_DO.

Registr Init_DO obsahuje data pro přednastavení výstupních logických portů do požadované úrovně po zapnutí modulu - formát dat je totožný s nejnižšími 8 bity registru digitálních portů.

Registr Ctrl_DI je určen pro volbu negace vstupů; nastavením odpovídajícího bitu v registru do logické úrovně "H" zajistí inverzi vstupního signálu a odpovídající příznak registru bude aktivován (úroveň "H") při vstupní úrovni "L".

Registr Ctrl_DO je určen pro volbu negace výstupů; nastavením odpovídajícího bitu v registru do logické úrovně "H" zajistí inverzi budiče výstupního signálu a odpovídající výstup bude aktivován (~ sepnut) při zápisu úrovně "L".

Registry modulu jsou vyhrazeny pro 8 DIN a 8 DOUT. Protože modul MU-1221 má realizovány pouze 2+2 DIO, jsou významné pouze dva nejnižší bity registru.

Příklad:

 $Ctrl_DO = 02_{H}$ $Init_DO = 00_{H}$

Při tomto nastavení bude logický výstup DOut0 aktivní (~sepnut) při zápisu logické úrovně "H" do registru digitálních portů, výstup DOut1 naopak při zápisu logické úrovně "L" (povolena negace signálu). Po zapnutí jednotky je do registru portů zapsána konstanta Init_DO (~ $00_{\tiny \rm H}$) a výstup DOut1 bude tedy aktivován.

Zapojení svorky napájecího napětí				
PIN funkce popis				
1	+V	napájecí napětí 12 nebo 24V - pozitivní signál		
2	GND	napájecí napětí 12 nebo 24V - negativní signál		

Tab.1. Zapojení signálů svorky napájecího napětí.

Zapojer	Zapojení svorky komunikační linky				
PIN funkce popis					
1	Q+	linka RS485 - pozitivní signál			
2	Q-	linka RS485 - negativní signál			

Tab.2. Zapojení signálů svorky komunikační linky.

Zapojer	Zapojení svorky digitálních portů				
PIN	funkce	popis			
1	DIN0+	digitální vstup DIN0 - pozitivní signál			
2	DIN0-	digitální vstup DIN0 - negativní signál			
3	DIN1+	digitální vstup DIN1 - pozitivní signál			
4	DIN1-	digitální vstup DIN1 - negativní signál			
5	DOUT0+	digitální výstup DOUT0 - pozitivní signál			
6	DOUT0-	digitální výstup DOUT0 - negativní signál			
7	DOUT1+	digitální výstup DOUT1 - pozitivní signál			
8	DOUT1-	digitální výstup DOUT1 - negativní signál			

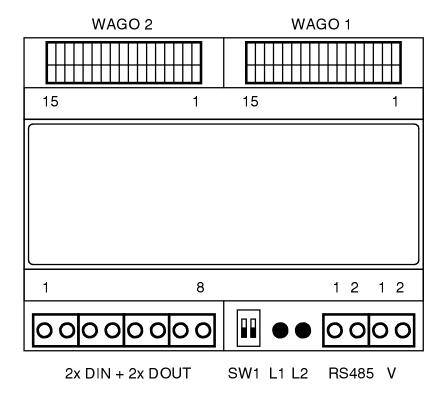
Tab.3. Zapojení signálů svorky digitálních portů.

Zapojení svorky Wago 1				
PIN	funkce	popis		
1	AIN0_P	diferenciální vstup AIN0 - neinvertovaný signál		
2	AIN0_N	diferenciální vstup AIN0 - invertovaný signál		
3	AIN0_K	S.E. vstup AIN0 - vstup pro kompenzaci přívodních vodičů		
4	I _{ref} 0	referenční proud RTD - pro kanál AIN0		
5	AGND	společná svorka		
6	AIN1_P	diferenciální vstup AIN1 - neinvertovaný signál		
7	AIN1_N	diferenciální vstup AIN1 - invertovaný signál		
8	AIN1_K	S.E. vstup AIN1 - vstup pro kompenzaci přívodních vodičů		
9	I _{ref} 1	referenční proud RTD - pro kanál AIN1		
10	AGND	společná svorka		
11	AIN2_P	diferenciální vstup AIN2 - neinvertovaný signál		
12	AIN2_N	diferenciální vstup AIN2 - invertovaný signál		
13	AIN2_K	S.E. vstup AIN2 - vstup pro kompenzaci přívodních vodičů		
14	I _{ref} 2	referenční proud RTD - pro kanál AIN2		
15	AGND	společná svorka		

Tab.4. Zapojení signálů svorky analogových vstupů WAGO 1.

Zapojení svorky Wago 2				
PIN	funkce	popis		
1	AIN3_P	diferenciální vstup AIN3 - neinvertovaný signál		
2	AIN3_N	diferenciální vstup AIN3 - invertovaný signál		
3	AIN3_K	S.E. vstup AIN3 - vstup pro kompenzaci přívodních vodičů		
4	I _{ref} 3	referenční proud RTD - pro kanál AlN3		
5	AGND	společná svorka		
6	AIN4_P	diferenciální vstup AIN4 - neinvertovaný signál		
7	AIN4_N	diferenciální vstup AIN4 - invertovaný signál		
8	AIN4_K	S.E. vstup AIN4 - vstup pro kompenzaci přívodních vodičů		
9	I _{ref} 4	referenční proud RTD - pro kanál AlN4		
10	AGND	společná svorka		
11	AIN5_P	diferenciální vstup AIN5 - neinvertovaný signál		
12	AIN5_N	diferenciální vstup AIN5 - invertovaný signál		
13	AIN5_K	S.E. vstup AIN5 - vstup pro kompenzaci přívodních vodičů		
14	I _{ref} 5	referenční proud RTD - pro kanál AlN5		
15	AGND	společná svorka		

Tab.5. Zapojení signálů svorky analogových vstupů WAGO 2.


Konfigu	rační paměť E	EPROM
ADR	název	popis
0	SCAN_0	konfigurační byte 0. vstupního analogového kanálu (AIN0)
1	SCAN_1	konfigurační byte 1. vstupního analogového kanálu (AlN1)
11	SCAN_11	konfigurační byte 11 vstupního analogového kanálu (AlN11)
12		nevyužito
22		nevyužito
23	U_K_Lo	kalibrační konstanta napěťových rozsahů - nižší byte
24	U_K_Hi	kalibrační konstanta napěťových rozsahů - vyšší byte
25	U_Q_Lo	kalibrační konstanta napěťových rozsahů - nižší byte
26	U_Q_Hi	kalibrační konstanta napěťových rozsahů - vyšší byte
27	TC_K_Lo	kalibrační konstanta teplotního čidla - nižší byte
28	TC_K_Hi	kalibrační konstanta teplotního čidla - vyšší byte
29	TC_Q_Lo	kalibrační konstanta teplotního čidla - nižší byte
30	TC_Q_Hi	kalibrační konstanta teplotního čidla - vyšší byte
31	Ctrl_TC	řídicí registr teplotního čidla
32	Init_DO	inicializační konstanta logických výstupů
33	Ctrl_DI	řídicí registr logických vstupů - negace hodnoty
34	Ctrl_DO	řídicí registr logických výstupů - negace hodnoty
35		nevyužito
59		nevyužito
60	Res	rezerva - systémová proměnná
61	StatusReg	stavový registr modulu
62	COM_BD	komunikační rychlost modulu
63	COM_ADR	komunikační adresa modulu
64		nevyužito
95		nevyužito

Tab.6. Rozdělení konfigurační paměti EEPROM.

registr COM_BD	
obsah	komunikační rychlost
00 _H	600 Bd
01 _H	1200 Bd
02 _H	2400 Bd
03 _H	4800 Bd
04 _H	9600 Bd
05 _H	19200 Bd
06 _H	38400 Bd
07 _H	57600 Bd
08 _H	115200 Bd

Tab.7. Volba komunikační rychlosti.

MU-1221 Příloha III - obrázky

Obr.1. Obrázek modulu MU-1221.

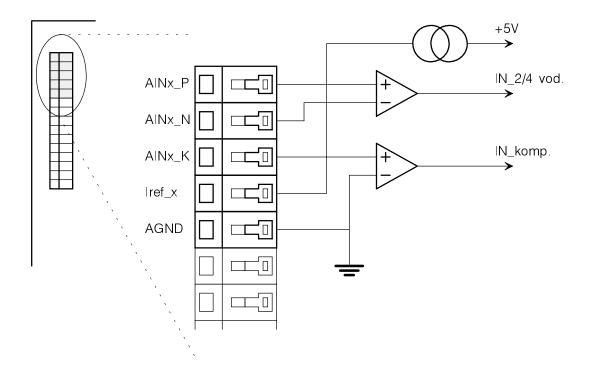
WAGO 1/2 svorky pro analogové vstupy

DIN/DOUT šroubovací svorky pro digitální porty

SW1 DIP spínač pro inicializaci desky a blokování EEPROM

L1 indikační LED aktivity komunikační linky

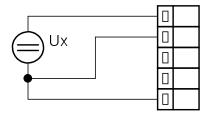
L2 indikační LED napájecího napětí


RS485 šroubovací svorka signálů komunikační linky

V šroubovací svorka pro napájecí napětí

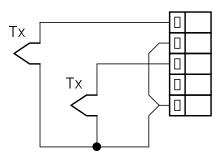
(alternativně 12 nebo 24V)

rev. 7.98


MU-1221 Příloha III - obrázky

Obr.2. Schema zapojení pinů svorek WAGO.

rev. 7.98


MU-1221 Příloha III - obrázky

Měření napětí diferenciálním vstupem v symetrickém zapojení.

Měření napětí všemi vstupy v nesymetrickém zapojení.

Měření teploty pomocí termočlánků.

Obr.3. Typická zapojení analogových vstupů.

rev. 7.98