MU-161 MU-162 1x PWM OUT DIO, RS485

Upozornění:

Uži vatelská příručka a její součásti jsou autorským dílem chráněným ustanovením zákona č. 35/1965 Sb. o dílech li terárních, vědeckých a uměleckých (Autorský zákon) ve znění zákona č. 89/1990 Sb., zákona č. 468/1991 Sb., zákona č. 318/1993 Sb., zákona č. 237/1995 Sb. a zákona č. 86/1996 Sb.

Všechna jména a názvy použi té v textu mohou být chráněnými známkami nebo obchodními názvy výrobků příslušných firem.

© 1994÷1998 TEDIA spol. s r. o.

Záruční a pozáruční servis:

TEDIA spol. s r. o., P.O.BOX 40, 312 90 Plzeň 12

telefon: 019 7478168
fax: 019 7478169
hotline: 0603 442786
e-mail: tedia@tedia.cz
internet: http://www.tedia.cz

Obsah

1.	Úvodní popis Charakteristika	I - 1
2.1. 2.2. 2.3. 2.4. 2.5.	Technické parametry PWM výstup Digitální výstupy MU-161 Digitální výstupy MU-162 Komunikační linka Ostatní údaje	I - 2 I - 2 I - 2 I - 2 I - 2
3.3. 3.4.	Instalace modulu Úvod Připojení napájecího zdroje Připojení komunikační linky Digitální výstupy PWM výstup	I - 3 I - 3 I - 3 I - 3 I - 3
	Popis vnitřní struktury modulu Popis PWM výstupu Popis digitálních výstupů Popis komunikačních obvodů Konfigurační paměť EEPROM	I - 4 I - 4 I - 4 I - 4
	Základní popis firmware Úvod Popis činnosti Úvodní inicializace Provozní konfigurace	I - 5 I - 5 I - 5 I - 5
6.2.	Popis periferií Úvod Seznam periferií ED0 - PWM výstup ED64 - DIO porty ID0 - stavový registr modulu IA0 - konfigurační paměť EEPROM SP0 - speciální registry	I - 6 I - 6 I - 6 I - 7 I - 7 I - 8
7.1. 7.2. 7.3.	Konfigurace modulu Úvod Konfigurace PWM výstupu Konfigurace digitálních portů	I - 9 I - 9 I - 10
	hy: oha II - tabulky oha III - obrázky	II III

1. Úvod

1.1. Charakteristika

MU-161/162 jsou externí moduly obsahující jeden výstup s pulsně šířkovou modulací (PWM) a dva digitální výstupy a jsou určeny zejména pro doplnění stavebnice analogových modulů.

Veškerou obsluhu portů zajišťují dva procesory typu 89C2051 ovládané z PC po komunikační lince pomocí implemetované sady makroinstrukcí.

PWM výstup je opticky izolován od napájecího zdroje a komunikační linky.

Digitální porty nejsou opticky izolovány od napájecího zdroje ani komunikační linky; k tomuto účelu jsou určeny doplňkové moduly pro úpravu signálů (izolační převodníky technologických úrovní na TTL, resp. výkonové výstupní moduly).

Vnitřní architekturou je deska kompatibilní se stavebnicí MICROUNIT a standardně je implementován komunikační protokol AIBUS-2. Specifikace tohoto protokolu je uvedena ve zvláštní příručce a další text předpokládá její znalost.

Externí modul MU-161/162 obsahuje:

- 1 PWM výstup s optickou izolací
- 2 digitální výstupy (TTL nebo OC)
- obvody komunikační linky RS485

2. Technické parametry

2.1. PWM výstup

rozlišení PWM: 1 ms

výstupní perioda: $1.024s \div 65.536s$

typ výstupu: izolovaný spínač 48V/0,5A

aktivní úroveň: ON/ OFF (SW konfigurace)

2.2. Digitální výstupy MU-161

počet výstupů: 2

typ výstupů: TTL (resp. HCMOS)

2.3. Digitální výstupy MU-162

počet výstupů: 2

typ výstupů: OC (48V / 0,5A max.)

ochrana proti přepólování: dioda (1A max.)

2.4. Komunikační linka

typ rozhraní: RS485

typ zapojení: dvouvodičové komunikační rychlost: 600 Bd - 115,2 kBd

typ přenosu: podle specifikace AIBUS-2

(8 bitů, 1 stop bit, sudá/lichá parita)

2.5. Ostatní údaje

napájecí napětí: 10÷28V ochrana proti přepólování: 100V max.

ochrana proti přepětí: 35V max. (t=10s max.)

odběr proudu: 80 mA typ.

rozměry DIN pouzdra: 90x60x50 mm (V x H x Š)

3. Instalace modulu

3.1. Úvod

Při výrobě bylo dbáno na dosažení vysoké kvality a spolehlivosti, rovněž byla věnována pozornost důkladné kontrole před expedicí. Aby nedošlo ke snížení jakosti či poškození při instalaci, doporučujeme Vám pečlivě prostudovat tuto příručku a postupovat podle uvedeného návodu.

Vlastní instalace představuje umístění a připevnění modulu, jeho propojení s napájecím zdrojem, připojení komunikační linky a zapojení digitálních výstupů. Rozmístění kontaktních míst na desce je zakresleno na obrázku Obr.1.

3.2. Připojení napájecího zdroje

Napájení jednotky je řešeno z jediného zdroje; všechna pomocná napětí jsou generována interně.

Při zapojování zdroje je nutné dbát na správnou polaritu a toleranci napětí; v případě nedodržení povolených mezí může dojít k trvalému poškození obvodů modulu; podrobně viz obrázek Obr.1. a tabulka Tab.1.

Rovněž připojení napájecího napětí na jinou ze svorek modulu (např. na svorky linky RS485) může způsobit jeho trvalé poškození.

3.3. Připojení komunikační linky

Komunikační linka je vyvedena na dvojitou šroubovací svorku; při jejím zapojování je nutné dbát na správnou polaritu signálů jinak s modulem nebude navázána komunikace; podrobně viz obrázek Obr.1. a tabulka Tab.2.

3.4. Digitální výstupy

Digitální porty jsou zapojeny na šroubovací svorky; zapojení je vyznačeno v tabulce Tab.3. a na obrázku Obr.1.

3.5. PWM výstup

Signály PWM výstupu jsou zapojeny na šroubovací svorky; zapojení je vyznačeno v tabulce Tab.4. a na obrázku Obr.1.

4. Popis vnitřní struktury modulu

4.1. Popis PWM výstupu

Moduly MU-161/162 obsahují jeden PWM výstup s konfigurovatelnou periodou, aktivní úrovní a přednastavením hodnoty po zapnutí modulu.

PWM modulátor pracuje se pevným časovým intervalem 1ms a volitelnou periodou výstupního signálu v sedmi rozsazích od 1024*1ms do 65536*1ms.

Výstupní obvody jsou realizovány izolovaným polovodičovým spínačem s možností volby aktivní úrovně (spínač ON nebo OFF).

4.2. Popis digitálních výstupů

Moduly MU-161/162 obsahují dva digitální výstupy standardu TTL (MU-161) nebo typu otevřený kolektor (MU-162).

Výstupy jsou po resetu (zapnutí napájení nebo "Watchdog") přednastaveny podle konfiguračních dat v paměti EEPROM.

Pro aplikace vyžadující opticky izolované výstupní obvody je určena řada modulů DN-250 obsahující převodníky signálů průmyslových úrovní.

4.3. Popis komunikačních obvodů

Obvody linky RS485 umožňují přenos dat do vzdálenosti 1200m a připojení až 32 zařízení (včetně PC) na linku, k dalšímu rozšíření sítě (větší počet modulů nebo pro rozsáhlé aplikace) lze využít opakovače.

Periferní obvody linky jsou napájeny přímo ze základního zdroje.

4.4. Konfigurační paměť EEPROM

Modul obsahuje paměť EEPROM pro uložení všech konfiguračních dat modulu (adresa a komunikační rychlost, parametry DIO apod.).

Z důvodu dosažení nejvyšší provozní spolehlivosti jsou obvody doplněny konfiguračním spínačem (SW1 - segment "1") pro zablokování obsahu proti možnému přepisu. Je-li tento spínač rozepnutý, lze paměť EEPROM volně programovat a rovněž používat modul v běžném provozu. V případě sepnutého spínače je technicky znemožněn zápis a modul lze používat s aktuálním nastavením; změnu konfigurace však nelze provést (ani poruchou modulu či vnějším rušením).

5. Základní popis firmware

5.1. Úvod

Standardně instalovaný firmware pracuje podle specifikace protokolu **AIB**US-2, jehož popis je uveden ve zvláštní příručce. V této kapitole proto nebudou popisovány obecné vlastnosti, ale pouze obsluha jednotlivých periferií jednotky. Další text se vztahuje k firmware verze 1.00.

5.2. Popis činnosti

Po připojení napájení deska provede interní inicializaci, při níž nastaví své základní pracovní parametry, tzn. přenosovou komunikační rychlost a adresu v závislost na stavu inicializačního spínače, a zpracuje konfigurační data pro I/O porty.

Po ukončení této inicializační fáze deska přechází do vlastního pracovního režimu, v kterém provádí obsluhu požadavků komunikační linky.

Ovládání modulu probíhá pomocí souboru makroinstrukcí, nazývaných funkcemi. Tyto funkce zajišťují obsluhu digitálních portů, EEPROM, programování parametrů portů, přenos dat oběma směry atd.

5.3. Úvodní inicializace

Pro úvodní inicializaci slouží DIL spínač SW1; v případě sepnutého segmentu "2" modul pracuje s pevnou adresou "0" a přenosovou rychlostí 9600Bd. V tomto režimu jsou dostupné všechny funkce modulu, předvolené hodnoty komunikačních parametrů (v EEPROM) jsou však ignorovány.

K nastavení modulu lze využít dodávaný software nebo použít vlastního programového vybavení pro přepis obsahu EEPROM; význam jednotlivých konstant EEPROM je popsán ve zvláštní kapitole.

Stav incializačního spínače SW1-2 je detekován pouze při zapnutí modulu. Změny v EEPROM paměti jsou modulem akceptovány až po novém zapnutí modulu.

Moduly jsou nastaveny od výrobce na adresu 1 a komunikační rychlost 9600Bd.

5.4. Provozní konfigurace

Po nastavení adresy a komunikační rychlosti lze konfigurovat jednotlivé periferie modulu; k tomuto kroku lze využít program standardně dodávaný s modulem.

6. Popis periferií

6.1. Úvod

Popis v následujících odstavcích vychází ze specifikace periferií podle referenční příručky k protokolu AIBUS-2.

6.2. Seznam periferií

Externí periferie s přímým přístupem:

ED0 PWM výstup ED64 DIO porty

Interní periferie s přímý přístupem:

ID0 stavový registr

Interní adresovatelné periferie:

IAO konfigurační EEPROM

Interní periferie - speciální registry: SP0, SP1 typ modulu

SP2 verze firmware

6.3. ED0 - PWM výstup

Externí periferie s přímým přístupem ED0 obsahuje data analogového výstupu; formát dat je uveden v tabulce.

00 _H 00 _H		DA_Hi _H	DA_Lo _H
D31D24			D7D0

Data jsou standardně přenášena v celočíselném formátu v rozsahu 0÷65535; hodnotě "0" odpovídá minimální délka pulsu, hodnotě "65535" pak maximální délka.

Periferie má význam pro operaci zápis (přenos dat do PWM modulátoru) i operaci čtení (zpětné čtení stavu).

Vztah 16-bitového formátu a zvolené periody.

Volbou periody je reálné pracovní rozlišení 16-bitového PWM modulátoru (pro periodu 65.536s) redukováno až na 10 bitů (pro periodu 1.024s); pro řízení PWM modulátoru jsou využívány pouze nejvyšší platné bity a nejnižší bity (tzn. až 6 bitů podle zvolené periody) jsou ignorovány.

Např. při nastavení periody 1.024s, tzn. při 10-bitovém rozlišení, platí: Zadáním hodnoty 0÷63 není generován žádný puls, hodnotou 64÷127 je generován impuls délky 1ms, 128÷191 impuls délky 2ms atd. Vyjímku z této posloupnosti tvoří hodnota 65535 aktivující výstupní obvod trvale (namísto impulsu délky 1023 ms).

6.4. ED64 - DIO porty

Externí periferie s přímým přístupem ED64 obsahuje data 32-bitového řadiče digitálních vstupů a výstupů. Formát dat je uveden v tabulce.

				DIN1	DIN0
D31D24	D23D16	D15D8	D7D2	D1	D0

Data jsou standardně přenášena v pozitivním kódu ("H" představuje aktivovaný vstup nebo výstup) v rozsahu 32-bitového čísla; každý bit představuje stav jednoho portu. Změnou konfigurace modulu však lze však zvolit inverzi aktivní úrovně.

Periferie má význam pro operaci zápis (ovládán stav digitálních výstupů); nevyužité bity výstupního registru jsou modulem ignorovány.

6.5. ID0 - stavový registr modulu

Interní periferie s přímým přístupem ID0 obsahuje data stavového registru modulu. Formát dat je uveden v tabulce.

00 _H	00 _H 00 _H		Status Registr
D31D24	D23D16	D15D8	D7D0

Registr má platná data pouze v oblasti globálních příznaků, které jsou obsaženy každou jednotkou (viz popis protokolu); žádný z lokálních příznaků není využit.

Periferie má význam pro operaci čtení (čten stav příznaků) i zápis (nulován nebo nastavován stav příznaků).

Status registr je zahrnut jako samostatný znak každé zprávy; podrobně viz specifikace komunikačního protokolu.

6.6. IA0 - konfigurační paměť EEPROM

Interní adresovatelná periferie IA0 představuje konfigurační paměť modulu. Platný rozsah adresového prostoru je 0~95; požadavek o operaci mimo tento rozsah není akceptován a funkce vrací neplatná data. Tento stav je signalizován nastavením odpovídajícího příznaku ve Status registru. Paměť obsahuje 8-bitová data.

Oproti standardnímu formátu jsou z důvodu vyšší spolehlivosti data i adresa přenášeny v kódovaném tvaru; nižší a vyšší byte adresy nebo dat je vždy zdvojen. Situace při operaci "zápis dat" je znázorněna v tabulce; při čtení je stav analogický.

EED7EED0	EED7EED0	EEA7EEA0	EEA7EEA0
D31D24	D23D16	D15D8	D7D0

6.7. SP0~2 - speciální registry

Modul obsahuje tři speciální registry, které obsahují:

SP0 první čtyři znaky typového označení modulu SP1 druhé čtyři znaky typového označení modulu

SP2 čtyři znaky označení verze modulu Přenášená data mají tvar ASCII řetězce o délce 4 znaky. Příklad: SP0 + SP1 + SP2 ~ "MU-1" + "61 " + "1.00"

7. Konfigurace modulu

7.1. Úvod

Popis v následujících odstavcích vychází ze specifikace periferií podle referenční příručky k protokolu AIBUS-2. Veškerá konfigurace modulu se provádí modifikací dat v konfigurační paměti EEPROM.

Moduly MU-161/162 mají tyto konfigurovatelné obvody (viz tabulka Tab.5.):

- PWM výstup (registry Init_PWM, Ctrl_PWM)
- digitální výstupní porty (registry Init_DO, Ctrl_DO)

Mimo těchto registrů obsahuje konfigurační pamět ještě další tři globální registry:

- stavový registr (StatusReg)
- registr komunikační adresy modulu (COM_ADR)
- registr komunikační rychlosti (COM_BD) (viz tabulka Tab.6.)

Význam StatusReg a COM_ADR je uveden v referenční příručce protokolu AIBus-2.

Celou konfiguraci modulu lze provést bez přesné znalosti interních registrů uživatelským programem dodávaným společně s modulem.

7.2. Konfigurace PWM výstupu

Pro konfiguraci jsou vyhrazeny dva registry; registr Init_PWM a Ctrl_PWM.

Registr Init_PWM obsahuje 16-bitová data pro inicializační přednastavení PWM modulátoru po zapnutí modulu nebo restartu (např. z důvodu vysokého rušení).

Formát dat je celočíselný s daty v rozsahu 0~65535.

Druhý registr Ctrl_PWM je určen pro konfiguraci periody výstupního signálu PWM modulátoru. je určen registr Init_PWM.

Struktura registru je následující:

POL					PER		
D7	D6	D5	D4	D3	D2	D1	D0

PER perioda výstupního signálu PWM modulátoru 0 1.024 s 1 2,048 s 5 32,768 s 65,536 s **POL** polarita výstupního signálu - volba aktivní úrovně aktivní úroveň ON 1 aktivní úroveň OFF

7.3. Konfigurace digitálních portů

Pro konfiguraci digitálních portů jsou vyhrazeny dva registry; Init_DO a Ctrl_DO. Registr Init_DO obsahuje data pro přednastavení výstupních digitálníých portů do požadované úrovně po zapnutí modulu - formát dat je totožný s nejnižšími 8 bity registru digitálních portů.

Registr Ctrl_DO je určen pro volbu negace výstupů; nastavením odpovídajícího bitu v registru do logické úrovně "H" zajistí inverzi budiče výstupního signálu a odpovídající výstup bude aktivován (~ sepnut) při zápisu úrovně "L".

Registry modulu jsou vyhrazeny pro 8 DIN a 8 DOUT. Protože moduly MU-161/162 mají realizovány pouze 2 DIO, jsou významné pouze dva nejnižžší bity registru.

Příklad:

$$Ctrl_DO = 02_{H}$$

$$Init_DO = 00_{H}$$

Při tomto nastavení bude digitální výstup DOut0 aktivní (~sepnut) při zápisu logické úrovně "H" do registru digitálních portů, výstup DOut1 naopak při zápisu logické úrovně "L" (povolena negace signálu). Po zapnutí jednotky je do registru portů zapsána konstanta $Init_DO$ (~ 00_H) a výstup DOut1 bude tedy aktivován.

MU-161, MU-162 Příloha II - tabulky

Zapojer	Zapojení svorky napájecího napětí				
PIN	PIN funkce popis				
1	+V	napájecí napětí 12 nebo 24V - pozitivní signál			
2	GND	napájecí napětí 12 nebo 24V - negativní signál			

Tab.1. Zapojení signálů svorky napájecího napětí.

Zapojení svorky komunikační linky				
PIN funkce popis				
1	Q+	linka RS485 - pozitivní signál		
2	Q-	linka RS485 - negativní signál		

Tab.2. Zapojení signálů svorky komunikační linky.

Zapojer	Zapojení svorky digitálních portů			
PIN	funkce	popis		
1	DOUT 0	digitální výstup DOUT 0		
2	GND	GND - společná svorka		
3	DOUT 1	digitální výstup DOUT 1		

Tab.3. Zapojení signálů svorky digitálních portů.

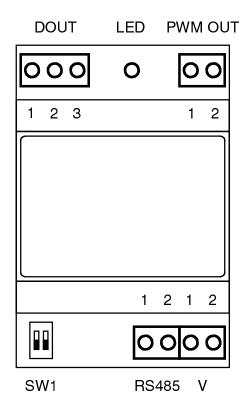
Zapojer	Zapojení svorky analogového výstupu			
PIN	funkce	popis		
1	S_N	PWM spínač, negativní pól		
2	S_P	PWM spínač, pozitivní pól		

Tab.4. Zapojení signálů svorky PWM výstupu.

Vnitřní zapojení spínače je zřejmé z obrázku Obr.2.

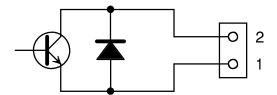
MU-161, MU-162 Příloha II - tabulky

Konfig	Konfigurační paměť EEPROM				
ADR	název	popis			
0	Res	rezerva - systémová proměnná			
1	Res	rezerva - systémová proměnná			
2		nevyužito			
31		nevyužito			
32	Init_DO	inicializační konstanta logických výstupů			
33		nevyužito			
34	Ctrl_DO	řídicí registr logických výstupů - negace hodnoty			
35	Init_PWM_Lo	inicializační konstanta PWM výstupu (viz pozn.)			
36	Init_PWM_Hi	inicializační konstanta PWM výstupu (viz pozn.)			
37	Ctrl_PWM	řídicí registr PWM výstupu			
38		nevyužito			
59		nevyužito			
60	Res	rezerva - systémová proměnná			
61	StatusReg	stavový registr modulu			
62	COM_BD	komunikační rychlost modulu			
63	COM_ADR	komunikační adresa modulu			
64		nevyužito			
95		nevyužito			


Tab.5. Rozdělení konfigurační paměti EEPROM.

Konstanta Init_PWM je definována vztahem: Init_PWM = 256*Init_PWM_Hi + Init_PWM_Lo.

registr COM_BD	
obsah	komunikační rychlost
00 _H	600 Bd
01 _H	1200 Bd
02 _H	2400 Bd
03 _H	4800 Bd
04 _H	9600 Bd
05 _H	19200 Bd
06 _H	38400 Bd
07 _H	57600 Bd
08 _H	115200 Bd


Tab.6. Volba komunikační rychlosti.

MU-161, MU-162 Příloha III - obrázky

Obr.1. Obrázek modulu MU-161/162.

DOUT šroubovací svorky pro digitální výstupy
PWM OUT šroubovací svorky pro PWM výstup
LED indikace stavu PWM výstupu
SW1 DIP spínač pro inicializaci desky a blokování EEPROM
RS485 šroubovací svorka signálů komunikační linky
V šroubovací svorka pro napájecí napětí

Obr.2. Schema výstupního obvodu PWM modulátoru.

•••••
•••••
 •••••
 •••••
 •••••
 ••••••
••••••
 •••••
 ••••••
 ••••••
••••••
••••••
••••••
•••••