MU-631 MU-632

DIO, RS-485

Upozornění:

Uži vatelská příručka a její součásti jsou autorským dílem chráněným ustanovením zákona č. 35/1965 Sb. o dílech li terárních, vědeckých a uměleckých (Autorský zákon) ve znění zákona č. 89/1990 Sb., zákona č. 468/1991 Sb., zákona č. 318/1993 Sb., zákona č. 237/1995 Sb. a zákona č. 86/1996 Sb.

Všechna jména a názvy použi té v textu mohou být chráněnými známkami nebo obchodními názvy výrobků příslušných firem.

© 1994÷2000 TEDIA spol. s r. o.

Záruční a pozáruční servis:

TEDIA spol. s r. o., Zábělská 12, 312 11 Plzeň 12

telefon: 019 7478168 fax: 019 7478169 e-mail: tedia@tedia.cz internet: http://www.tedia.cz

Obsah

1.1.	Úvodní popis Charakteristika	I - 1 I - 1		
1.2.				
2.	Technické parametry			
2.1.	Digitální vstupy	I - 2		
2.2.	Digitální výstupy	I - 2		
2.3.		I - 2		
2.4. 2.5.	Komunikační linka Ostatní údaje	I - 3 I - 3		
		1 0		
3.	Instalace modulu	Τ		
3.1. 3.2.	Úvod Džinajaní panájacího zdraja	I - 4 I - 4		
3.3.	Připojení napájecího zdroje Připojení komunikační linky	I - 4		
3.4.	Digitální porty	I - 4		
4.	Popis vnitřní struktury modulu			
	•	Т 5		
4.1. 4.2.	Popis digitálních vstupů Popis digitálních vstupů	I - 5 I - 5		
4.3.	Popis komunikačních obvodů	I - 5		
4.4.	Konfigurační paměť EEPROM	I - 5		
5.	Základní popis firmware			
5.1.	Úvod	I - 6		
5.2.	Popis činnosti	I - 6		
5.3.	Úvodní inicializace	I - 6		
5.4.	Provozní konfigurace	I - 6		
6.	Popis periferií			
6.1.	Úvod	I - 7		
6.2.	Seznam periferií	I - 7		
6.3.	ED64 - DIO porty	I - 7		
6.4.	ID0 - stavový registr modulu	I - 7		
6.5. 6.6.	IA0 - konfigurační paměť EEPROM SP0 - speciální registry	I - 8 I - 8		
		1 - 0		
7.	Konfigurace modulu			
7.1.	Úvod	I - 9		
7.2.	Konfigurace digitálních portů	I - 9		
Přílol	•			
	oha II - tabulky	II		
Přílo	oha III - obrázky	III		

1. Úvod

1.1. Charakteristika

MU-631/632 jsou externí moduly digitálních portů a jsou určeny zejména pro doplnění stavebnice analogových modulů.

Veškerou obsluhu portů zajišťuje mikropočítač ovládaný z nadřízeného PC po komunikační lince pomocí implementované sady makroinstrukcí.

Digitální porty jsou opticky izolovány od napájecího zdroje i komunikační linky; modul umožňuje přímo zpracovávat signály technologických úrovní.

Vnitřní architekturou je modul kompatibilní se stavebnicí MicroUnit serie a standardně je implementován komunikační protokol AIBus-2. Specifikace tohoto protokolu je uvedena v samostatné příručce a další text předpokládá její znalost.

Moduly MU-631/632 obsahují:

- 3 digitální vstupy (24V nebo 230V s optickou izolací)
- 3 digitální výstupy (přepínací relé nebo optotriak)
- obvody komunikační linky RS-485

1.2. Použití

Moduly MicroUnit serie jsou určeny pro realizaci distribuovaných systémů monitorování a řízení technologických procesů s centrální jednotkou zpravidla na bázi PC nebo PLC.

Moduly se instalují do bezprostřední blízkosti snímačů veličin a akčních členů, napájení je řešeno vnějším zdrojem bezpečného napětí.

Komunikační linka je realizována vodičem vyhovujícím standardu RS-485 (tzn. stíněný dvouvodič, průřez vodiče minimálně 0,22 mm², impedance 100÷130Ohm, kapacita vedení cca 60pF/m). Doporučeným typem je kabel Belden 9841.

Moduly jsou určeny pro montáž na lištu DIN 35mm (DIN EN 50 022).

Moduly musí být použity tak, aby jejich uvedením do provozu nedopatřením nebo selháním zaviněným jakýmkoliv způsobem se nemohly stát nebezpečnými osobám nebo majetku.

2. Technické parametry

2.1. Digitální vstupy

počet vstupů: 3

MU-631 - rozsah 1:

pracovní napětí: <3V (úroveň L) >10V (úroveň H)

odolnost proti přepětí: 35V

MU-631 - rozsah 2:

pracovní napětí: <5V (úroveň L) >20V (úroveň H)

odolnost proti přepětí: 100V

MU-632:

pracovní napětí: <20V (úroveň L) >100V (úroveň H)

odolnost proti přepětí: 250V

Vstu₁

Vstupní obvody zpracují stejnosměrný i střídavý signál 50Hz; pracovní úrovně proto představují stejnosměrné napětí nebo efektivní hodnotu střídavého napětí.

2.2. Digitální výstupy

počet výstupů: 3

MU-631:

typ výstupů: přepínací relé

ochrana proti přepětí: varistor

zatížitelnost relé: $250 V_{RMS} / 3A \qquad (trvalý proud) \\ 250 V_{RMS} / 8A \qquad (t<0,5s, T>10s)$

MU-632:

typ výstupů: optotriak ochrana proti přepětí: varistor

zatížitelnost triaku: 250V_{RMS} /1,5A (trvalý proud)

 $250V_{RMS}/3A$ (t<0,5s, T>10s)

2.3. Izolace obvodů

 $\begin{array}{ll} \mbox{digit\'aln\'i vstup \& \'i\'dic\'i obvody:} & 2500\mbox{V}_{\rm RMS} & (\mbox{f=}50\mbox{Hz}, \, \mbox{t=}60\mbox{s}) \\ \mbox{digit\'aln\'i v\'y\'stup \& \'i\'dic\'i obvody:} & 2500\mbox{V}_{\rm RMS} & (\mbox{f=}50\mbox{Hz}, \, \mbox{t=}60\mbox{s}) \\ \end{array}$

mezi digitálními vstupy: $1500V_{RMS}$ (MU-631, f=50Hz, t=60s) $2500V_{RMS}$ (MU-632, f=50Hz, t=60s)

mezi digitálními výstupy: $1500V_{RMS}$ (f=50Hz, t=60s)

digitální vstup & digitální výstup: $2500V_{RMS}$ (f=50Hz, t=60s)

2.4. Komunikační linka

RS-485 typ rozhraní:

transil BZW06-5V8 ochrana proti přepětí a přepólování: komunikační rychlost: $600 \text{Bd} \div 115,2 \text{kBd}$

typ přenosu: podle specifikace AIBus-2

2.5. Ostatní údaje

napájecí napětí: $10V_{DC} \div 30V_{DC}$ (MU-631)

 $10V_{DC} \div 20V_{DC}$ (MU-632, verze pro 12V) $15V_{DC} \div 30V_{DC}$ (MU-632, verze pro 24V)

 $100\overline{V}_{DC}$ max. ochrana proti přepólování:

ochrana proti přepětí: $35V_{DC}$ max. (t=10s max.)

odběr proudu: 40mA typ. (všechny výstupy OFF)

200mA max. (všechny výstupy ON)

 $10V_{DC} \div 30V_{DC}$ napájecí napětí: ochrana proti přepólování:

 $100 V_{\rm DC}$ max. $35 V_{\rm DC}$ max. ochrana proti přepětí: (t=10s max.)odběr proudu: 60mA typ. (100mA max.)

rozměry pouzdra: 90x60x105 mm

1200m max. doporučená délka vodičů: (signály RS-485)

2m max. (ostatní signály)

EMC: ČSN EN 50081-2

ČSN EN 50082-2

-10÷+55°C pracovní teplota:

渔 Moduly jsou dodávány ve dvou provedení napájecích obvodů (MU-631/12V a MU-631/24V).

3. Instalace modulu

3.1. Úvod

Při výrobě bylo dbáno na dosažení vysoké kvality a spolehlivosti, rovněž byla věnována pozornost důkladné kontrole před expedicí. Aby nedošlo ke snížení jakosti či poškození při instalaci, doporučujeme Vám pečlivě prostudovat tuto příručku a postupovat podle uvedeného návodu.

Vlastní instalace představuje umístění a připevnění modulu, jeho propojení s napájecím zdrojem, připojení komunikační linky a zapojení digitálních vstupů. Rozmístění kontaktních míst na desce je zakresleno na obrázku Obr.1.

3.2. Připojení napájecího zdroje

Napájení modulu je řešeno z jediného zdroje; všechna pomocná napětí jsou generována interně.

Při zapojování zdroje je nutné dbát na správnou polaritu a toleranci napětí; v případě nedodržení povolených mezí může dojít k trvalému poškození interních obvodů; podrobně viz obrázek Obr.1. a tabulka Tab.1.

Rovněž připojení napájecího napětí na jinou ze svorek modulu (např. na svorky linky RS-485) může způsobit jeho trvalé poškození.

Přítomnost napájecího napětí je indikována LED na pozici 15.

3.3. Připojení komunikační linky

Komunikační linka je vyvedena na dvojitou šroubovací svorku; při jejím zapojování je nutné dbát na správnou polaritu signálů jinak s modulem nebude navázána komunikace; podrobně viz obrázek Obr.1. a tabulka Tab.2.

Aktivita linky (tzn. reakce modulu na výzvu) je indikována LED na pozici 16.

3.4. Digitální porty

Digitální porty jsou zapojeny na šroubovací svorky; jejich zapojení je přehledně vyznačeno v tabulkách Tab.3A., Tab.3B. a na obrázku Obr.1.

Stav digitálních portů je indikován LED na pozicích 31÷39.

4. Popis vnitřní struktury modulu

4.1. Popis digitálních vstupů

Moduly MU-631/632 obsahují tři digitální vstupy určené pro přímé zpracování signálů průmyslových úrovní. Jednotlivé kanály jsou opticky izolovány od ostatních obvodů modulu i vzájemně od sebe. Podrobně viz Obr.2A. a Obr.2B.

Stav vstupů je signalizován pomocí indikačních LED.

4.2. Popis digitálních výstupů

Moduly MU-6š1/6š2 obsahují tři digitální výstupy určené pro přímé zpracování signálů průmyslových úrovní. Jednotlivé kanály jsou opticky izolovány od ostatních obvodů modulu i vzájemně od sebe. Podrobně viz Obr.3A. a Obr.3B.

Výstupy jsou po resetu (zapnutí napájení nebo "watchdog") přednastaveny podle konfiguračních dat v paměti EEPROM.

Stav výstupů je signalizován pomocí indikačních LED.

4.3. Popis komunikačních obvodů

Obvody RS-485 umožňují přenos dat do vzdálenosti 1200m a připojení až 32 zařízení na jeden segment linky, k dalšímu rozšíření sítě (větší počet modulů nebo aplikace většího rozsahu) lze využít opakovače.

Periferní obvody linky jsou napájeny přímo ze základního zdroje, tzn. nejsou od zdroje izolovány.

4.4. Konfigurační paměť EEPROM

Modul obsahuje paměť EEPROM pro uložení všech konfiguračních dat (adresa a komunikační rychlost, parametry DIO, ...).

Z důvodu zvýšení provozní spolehlivosti jsou obvody doplněny konfiguračním spínačem pro zablokování obsahu proti možnému přepisu (SW1 - segment 1). Je-li tento spínač rozepnutý, lze paměť EEPROM programovat konfiguračním software. V případě sepnutého spínače (poloha ON) je znemožněn zápis a obsah EEPROM nelze modifikovat (odolné proti chybné obsluze nebo krátkodobému selhání firmware např. při silném vnějším rušení).

rev. 01.2000 I - 5

5. Základní popis firmware

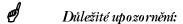
5.1. Úvod

Standardně instalovaný firmware pracuje podle specifikace protokolu AIBus-2, jehož popis je uveden ve zvláštní příručce. V této kapitole proto nebudou popisovány obecné vlastnosti, ale pouze obsluha jednotlivých periferií jednotky.

Další text se vztahuje k firmware verze 1.00.

5.2. Popis činnosti

Po připojení napájení modul provede interní inicializaci, při níž nastaví své základní pracovní parametry (tzn. komunikační rychlost a adresu v závislosti na stavu inicializačního spínače) a zpracuje konfigurační data pro I/O porty.


Po ukončení této inicializační fáze deska přechází do pracovního režimu, ve kterém provádí obsluhu požadavků komunikační linky.

Ovládání modulu probíhá pomocí souboru makroinstrukcí nazývaných funkcemi. Tyto funkce zajišťují obsluhu EEPROM, digitálních portů atd.

5.3. Úvodní inicializace

Pro úvodní inicializaci slouží DIL spínač SW1; v případě sepnutého segmentu 2 modul pracuje s pevnou adresou 0 a přenosovou rychlostí 9600Bd. V tomto režimu jsou dostupné všechny funkce modulu, hodnoty komunikačních parametrů předvolené v EEPROM jsou však ignorovány.

K nastavení modulu lze využít dodávaný software nebo použít vlastní programové vybavení pro přepis obsahu EEPROM; význam jednotlivých konstant EEPROM je popsán ve zvláštní kapitole.

Stav inicializačního spínače SW1-2 je detekován pouze při zapnutí modulu. Změny v EEPROM paměti jsou modulem akceptovány až po novém zapnutí modulu.

Moduly jsou nastaveny od výrobce na adresu 1 a komunikační rychlost 9600Bd.

5.4. Provozní konfigurace

Po nastavení adresy a komunikační rychlosti lze konfigurovat jednotlivé periferie modulu; k tomuto kroku lze využít program standardně dodávaný s modulem.

6. Popis periferií

6.1. Úvod

Popis v následujících odstavcích vychází ze specifikace periferií podle referenční příručky k protokolu AIBus-2.

6.2. Seznam periferií

Externí periferie s přímým přístupem:

ED64 DIO porty

Interní periferie s přímý přístupem:

ID0 stavový registr

Interní adresovatelné periferie:

IA0 konfigurační EEPROM

Interní periferie - speciální registry:

SP0, SP1 typ modulu SP2 verze firmware

6.3. ED64 - DIO porty

Externí periferie s přímým přístupem ED64 obsahuje data 32-bitového řadiče digitálních vstupů.

Formát dat je uveden ve dvou tabulkách postupně pro vstupy a výstupy.

0000	DIN2	DIN1	DIN0
D31D3	D2	D1	D0
	DOUT2	DOUT1	DOUT0

Data jsou standardně přenášena v pozitivním kódu (tzn. úroveň H představuje aktivovaný vstup nebo výstup) v rozsahu 32-bitového čísla; každý bit představuje stav jednoho portu. Změnou konfigurace však lze zvolit inverzi aktivní úrovně.

Periferie má význam pro operaci čtení (čten stav digitálních vstupů) i zápis (ovládán stav digitálních výstupů). Nevyužité bity vstupního registru jsou trvale nulovány, nevyužité bity výstupního registru jsou pak modulem ignorovány.

6.4. ID0 - stavový registr modulu

Interní periferie s přímým přístupem ID0 obsahuje data stavového registru modulu. Formát dat je uveden v tabulce.

00 _H	00 _H	00 _H 00 _H Status Regis	
D31D24	D23D16	D15D8	D7D0

Registr má platná data pouze v oblasti globálních příznaků, které jsou obsaženy každou jednotkou (viz popis protokolu); žádný z lokálních příznaků není využit. Periferie má význam pro operaci čtení (čten stav příznaků) i zápis (nulován nebo nastavován stav příznaků).

Status registr je zahrnut jako samostatný znak do každé zprávy (viz specifikace protokolu).

6.5. IA0 - konfigurační paměť EEPROM

Interní adresovatelná periferie IA0 představuje konfigurační paměť modulu. Platný rozsah adresového prostoru je 0~95; požadavek o operaci mimo tento rozsah není akceptován a funkce vrací neplatná data. Tento stav je signalizován nastavením odpovídajícího příznaku ve Status registru. Paměť obsahuje 8-bitová data.

Oproti standardnímu formátu jsou z důvodu vyšší spolehlivosti data i adresa přenášeny v kódovaném tvaru; nižší a vyšší byte adresy nebo dat je vždy zdvojen. Formát dat je uveden v tabulce.

EED7EED0	EED7EED0 EEA7EEA0 EEA7EEA0		EEA7EEA0
D31D24	D23D16	D15D8	D7D0

6.6. SP0÷2 - speciální registry

Modul obsahuje tři speciální registry, které obsahují:

SP0 první čtyři znaky typového označení modulu SP1 druhé čtyři znaky typového označení modulu

SP2 čtyři znaky označení verze modulu

Přenášená data mají tvar ASCII řetězce o délce 4 znaky.

Příklad: $\underline{SP0} + \underline{SP1} + \underline{SP2} = \underline{MU-6} + \underline{31} + \underline{1.00}$

7. Konfigurace modulu

7.1. Úvod

Popis v následujících odstavcích vychází ze specifikace periferií podle referenční příručky k protokolu AIBus-2.

Konfigurace modulu se provádí modifikací dat v paměti EEPROM.

Moduly MU-631/632 mají tyto konfigurovatelné obvody (viz tabulka Tab.4.):

- digitální vstupní porty (registr Ctrl_DI)
- digitální výstupní porty (registry Init_DO, Ctrl_DO)

Mimo těchto registrů obsahuje konfigurační pamět ještě další tři globální registry:

- stavový registr (StatusReg)
- registr komunikační adresy modulu (COM_ADR)
- registr komunikační rychlosti (COM_BD)

Význam registrů StatusReg a COM_ADR je uveden v referenční příručce protokolu AIBus-2, význam COM_BD pak v tabulce Tab.5.

Celou konfiguraci modulu lze provést bez přesné znalosti interních registrů uživatelským programem dodávaným společně s modulem.

7.2. Konfigurace digitálních portů

Pro konfiguraci digitálních portů jsou vyhrazeny tři registry; Init_DO, Ctrl_DI a Ctrl_DO.

Registr Init_DO obsahuje data pro přednastavení výstupních digitálních portů po zapnutí modulu, resp. restartu firmware modulu obvodem "watchdog"; formát dat je totožný s nejnižšími 8 bity registru periferie DIO.

Registr Ctrl_DI definuje stav vstupního registru periferie DIO, kterým je signalizována úroveň H na příslušném digitálním portu. Je-li vstupní signál v úrovni L, je pak odpovídající bit vstupního registru periferie DIO nastaven na hodnotu opačnou, než je zapsána v konfiguračním registru.

Registr Ctrl_DO definuje logickou úroveň výstupního registru periferie DIO, při níž jsou výstupní porty v aktivním stavu (tzn. sepnutý výkonový prvek nebo úroveň H v případě TTL výstupu). Je-li konfigurační registr nastaven do úrovně H, pak je rovněž zápisem úrovně H do bitu výstupního registru periferie DIO aktivován odpovídající výstupní port. Je-li konfigurační registr nastaven do úrovně L, je výstup aktivován zápisem úrovně L do výstupního registru periferie DIO.

Registry jsou vyhrazeny pro 8 DIN a 8 DOUT. Protože moduly MU-631/632 mají realizovány pouze 3+3 DIO, jsou významné pouze nejnižší bity registrů.

MU-631, MU-632 Příloha II - tabulky

Zapojení svorek napájecího napětí		
PIN	funkce	popis
11	GND	napájecí napětí 12 nebo 24V - negativní signál
12	+V	napájecí napětí 12 nebo 24V - pozitivní signál

Tab.1. Zapojení svorek napájecího napětí.

Zapojer	Zapojení svorek komunikační linky	
PIN	funkce	popis
13	Q-	linka RS-485 - negativní signál
14	Q+	linka RS-485 - pozitivní signál

Tab.2. Zapojení svorek komunikační linky.

Zapojer	ní svorek digitáln	ích portů - modul MU-631
PIN	funkce	popis
21	+DIN2-2	digitální vstup DIN2 - kladné napětí, rozsah 2
22	+DIN2-1	digitální vstup DIN2 - kladné napětí, rozsah 1
23	-DIN2-1/2	digitální vstup DIN2 - záporné napětí
24	+DIN1-2	digitální vstup DIN1 - kladné napětí, rozsah 2
25	+DIN1-1	digitální vstup DIN1 - kladné napětí, rozsah 1
26	-DIN1-1/2	digitální vstup DIN1 - záporné napětí
27	+DIN0-2	digitální vstup DIN0 - kladné napětí, rozsah 2
28	+DIN0-1	digitální vstup DIN0 - kladné napětí, rozsah 1
29	-DIN0-1/2	digitální vstup DIN0 - záporné napětí
41	DOUT2_NO	spínací kontakt relé DOUT2
42	DOUT2_NC	rozpínací kontakt relé DOUT2
43	DOUT2_CM	pohyblivý kontakt relé DOUT2
44	DOUT1_NO	spínací kontakt relé DOUT1
45	DOUT1_NC	rozpínací kontakt relé DOUT1
46	DOUT1_CM	pohyblivý kontakt relé DOUT1
47	DOUT0_NO	spínací kontakt relé DOUT0
48	DOUT0_NC	rozpínací kontakt relé DOUT0
49	DOUT0_CM	pohyblivý kontakt relé DOUT0

Tab.3A. Zapojení svorek digitálních portů - modul MU-631.

MU-631, MU-632 Příloha II - tabulky

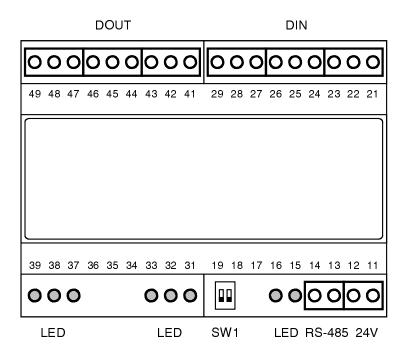
Zapojer	ní svorek digitáln	ích portů - modul MU-632
PIN	funkce	popis
21	+DIN2	digitální vstup DIN2 - kladné napětí
22	-DIN2	digitální vstup DIN2 - záporné napětí
23	nc	nevyužitá pozice
24	+DIN1	digitální vstup DIN1 - kladné napětí
25	-DIN1	digitální vstup DIN1 - záporné napětí
26	nc	nevyužitá pozice
27	+DIN0	digitální vstup DIN0 - kladné napětí
28	-DIN0	digitální vstup DIN0 - záporné napětí
29	nc	nevyužitá pozice
41	DOUT2	digitální výstup DOUT2 - triak
42	DOUT2	digitální výstup DOUT2 - triak
43	nc	nevyužitá pozice
44	DOUT1	digitální výstup DOUT1 - triak
45	DOUT1	digitální výstup DOUT1 - triak
46	nc	nevyužitá pozice
47	DOUT0	digitální výstup DOUT0 - triak
48	DOUT0	digitální výstup DOUT0 - triak
49	nc	nevyužitá pozice

 $Tab. 3B. \ \ Zapojení \ svorek \ digitálních \ portů - modul \ MU-632.$

rev. 01.2000 II - 2

MU-631, MU-632 Příloha II - tabulky

Konfigu	ırační paměť EEI	PROM
ADR	název	popis
0		nevyužito
31		nevyužito
32	Init_DO	inicializační konstanta digitálních výstupů
33	Ctrl_DI	řídicí registr digitálních vstupů
34	Ctrl_DO	řídicí registr digitálních výstupů
35		nevyužito
59		nevyužito
60	Res	rezerva - systémová proměnná
61	StatusReg	stavový registr modulu
62	COM_BD	komunikační rychlost modulu
63	COM_ADR	komunikační adresa modulu
64		nevyužito
95		nevyužito

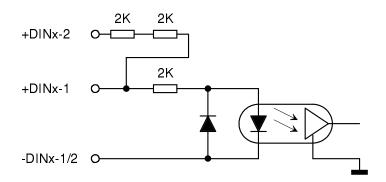

Tab.4. Rozdělení konfigurační paměti EEPROM.

Registr COM_BD	
obsah	komunikační rychlost
00 _H	600 Bd
01 _H	1200 Bd
02 _H	2400 Bd
03 _H	4800 Bd
04 _H	9600 Bd
05 _H	19200 Bd
06 _H	38400 Bd
07 _H	57600 Bd
08 _H	115200 Bd

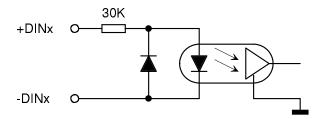
Tab.5. Volba komunikační rychlosti.

rev. 01.2000 II - 3

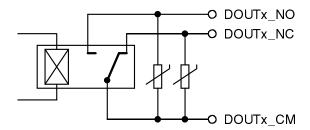
MU-631, MU-632 Příloha III - obrázky

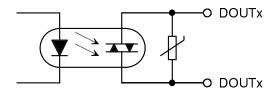


Obr.1. Obrázek modulu MU-631/632.


DOUT	šroubo	vací svorky pro digitální výstupy	
DIN	šroubo	vací svorky pro digitální vstupy	
24V	šroubo	vací svorky pro napájecí napětí	
RS-485	šroubo	vací svorky signálů komunikační linky	
LED	indika	indikační LED	
	15	napájecí napětí	
	16	RS-485	
	31	DIN2	
	32	DIN1	
	33	DIN0	
	37	DOUT2	
	38	DOUT1	
	39	DOUT0	
SW1	-	oínač pro inicializaci desky a blokování EEPROM ěn pod krycím víčkem svorek)	

rev. 01.2000 III - 1


MU-631, MU-632 Příloha III - obrázky


Obr.2A. Zjednodušené schema obvodů digitálních vstupů modulu MU-631.

Obr.2B. Zjednodušené schema obvodů digitálních vstupů modulu MU-632.

Obr.3A. Zjednodušené schema obvodů digitálních výstupů modulu MU-631.

Obr.3B. Zjednodušené schema obvodů digitálních výstupů modulu MU-632.

Uživatelské poznámky

.....

.....

.....

.....

.....

.....