PCA-1601

16-bit. DAC 8x DIN

Důležité upozornění!

Při zacházení s modulem dbejte zásad mani pulace s obvody citlivými na poškození elektrostatickým nábojem.

Instalaci provádějte zásadně při vypnutém počítači a vždy odpojte síťový kabel a přívodní vodiče!

Při nedodržení uvedených pravi del může dojít k trvalému poškození citlivých obvodů modulu nebo celého počítače.

Uži vatelská příručka a její součásti jsou autorským dílem chráněným ustanovením zákona č. 35/1965 Sb. o dílech li terárních, vědeckých a uměleckých (Autorský zákon) ve znění zákona č. 89/1990 Sb., zákona č. 468/1991 Sb., zákona č. 318/1993 Sb., zákona č. 237/1995 Sb. a zákona č. 86/1996 Sb.

Všechna jména a názvy použi té v textu mohou být chráněnými známkami nebo obchodními názvy výrobků příslušných firem.

© 1994÷2001 TEDIA spol. s r. o.

Záruční a pozáruční servis:

TEDIA spol. s r. o., Zábělská 12, 312 11 Plzeň 12

telefon: 019 7478168 fax: 019 7478169 e-mail: tedia@tedia.cz internet: http://www.tedia.cz

Obsah

1.	Úvodní popis	T 4
1.1.	Charakteristika	I - 1
2.	Technické parametry	
2.1.	D/A převodník	I - 2
2.2.	•	I - 2
2.3.	Ostatní údaje	I - 2
3.	Instalace karty	
3.1.	Úvod	I - 3
3.2.	Nastavení bázové adresy	I - 3
3.3.	Nastavení rozsahu D/A převodníku	I - 3
3.4.	Vlastní instalace	I - 3
3.5.	Rozmístění spínačů, propojek a konektorů	I - 3
3.6.	Zapojení konektorů	I - 3
4.	Struktura adresového prostoru	
4.1.	Popis adresového dekodéru	I - 4
4.2.	DACLoReg	I - 4
4.3.	DACHiReg	I - 4
4.4.	CWReg	I - 4
4.5.	8	I - 5
4.6.	DigInReg	I - 5
5.	Popis analogového výstupu	
5.1.	Úvod	I - 6
5.2.	Konfigurace výstupu	I - 6
5.3.	Programování D/A převodníku	I - 6
6.	Popis digitálních vstupů	
6.1.	Úvod	I - 7
6.2.	Zapojení vstupů	I - 7
Přílo	hy:	
	oha II - tabulky	
	oha III - obrázky	
	•	

1. Úvodní popis

1.1. Charakteristika

PCA-1601 je rozšiřující modul standardu PC/104 sdružující funkce izolovaného analogového výstupu a digitálních portů.

K přednostem modulu patří využití jediného napájecího napětí +5V.

Svojí koncepcí jsou moduly určeny zejména pro:

- průmyslové řídicí a regulační systémy
- integrované systémy řízení strojů a přístrojů

Moduly obsahují:

- 16-bitový D/A převodník se široce konfigurovatelným výstupním rozsahem
- 8 digitálních vstupů standardu TTL

2. Technické parametry

2.1. D/A převodník

počet výstupů: 1

rozlišení D/A převodníku: 16 bitů

rozsahy: $0 \div 5V$, $0 \div 10V$, $\pm 10V$

0÷20mA, 4÷20mA, 0÷24mA

doba ustálení analogového výstupu: 3ms max. $(\pm 0,1\%)$ výstupní impedance (nap. rozsahy): 10Ω $(\pm 1\%)$

zatěžovací impedance: 1000Ω min. (napěťový rozsah 5V)

2000Ω min. (napěťové rozsahy 10V)
600Ω max. (proudové rozsahy 20mA)
500Ω max. (proudový rozsah 24mA)

图

Výstupy D/A převodníků jsou odolné proti trvalému zkratu proti GND. Přivedením vnějšího napětí mimo rozsah ±12V dojde k nevratnému poškození obvodů.

2.2. Digitální vstupy

počet vstupů: 8

typ vstupů: HC/TTL

2

Vstupní porty jsou odolné proti přepětí ±24V.

2.3. Ostatní údaje

typ sběrnice: PC/104, 8 bitů (možnost rozšíření) I/O adresa: $200_H \div 3F8_H$ (64 intervalů)

délka intervalu obsazených adres: 8

izolační napětí DAC <-> PC: $1000V_{DC}$

napájecí napětí: +5V (500mA max.)

délka přívodních vodičů:

rozměry desky:

EMC:

ČSN EN 55022

ČSN EN 50081-1

ČSN EN 50082-1

2

Proudový odběr z napájecího zdroje je závislý na zvoleném rozsahu a stavu analogového výstupu; hodnota je uvedena pro proudový výstup 24mA v zatíženém stavu.

3. Instalace modulu

3.1. Úvod

Při výrobě bylo dbáno na dosažení vysoké kvality a spolehlivosti, rovněž byla věnována pozornost důkladné kontrole před expedicí. Aby nedošlo ke snížení jakosti či poškození při instalaci, doporučujeme Vám pečlivě prostudovat tuto příručku a postupovat podle uvedeného návodu.

3.2. Nastavení bázové adresy

Bázovou adresu PC modulu lze nastavit v rozsahu 200_H až 3F8_H. Volba se provádí prostřednictvím šestinásobného DIL přepínače DIL SW1; význam jednotlivých segmentů je vyznačen v tabulce Tab.1. Při volbě je třeba dbát, aby nedošlo ke kolizi s ostatními instalovanými I/O zařízeními. Seznam standardních zařízení umístěných v tomto intervalu adres je uveden v tabulce Tab.2.

3.3. Nastavení rozsahu D/A převodníku

Modul PCA-1601 obsahuje jeden D/A převodník s výstupním rozsahem konfigurovatelným sadou propojek; podrobně viz obrázek Obr.1. a Obr.2.

3.4. Vlastní instalace

Instalaci modulu provádějte zásadně při vypnutém počítači a dodržujte zásady pro manipulaci s obvody citlivými na poškození elektrostatickým nábojem. S modulem manipulujte za okraje a nedotýkejte se prsty součástek. Nakonfigurovaný modul zasuňte do konektoru PC/104 a zajistěte sloupky.

3.5. Rozmístění spínačů, propojek a konektorů

Na obrázků Obr.1. je vyznačeno rozmístění důležitých prvků modulu; význam spínačů a jumperů je zřejmý z předchozího textu, konektory jsou popsány vždy v příslušných kapitolách.

3.6. Zapojení konektorů

Zapojení vývodů uživatelských konektorů je zakresleno na obrázku Obr.3., význam jednotlivých vývodů je popsán v tabulkách Tab.3. a Tab.4.

4. Struktura adresového prostoru

4.1. Popis adresového dekodéru

Adresový dekodér umožňuje relokaci bázové adresy modulu v rozsahu 200_H až 3F8_H. Protože modul zabírá celkem 8 I/O adres, lze volit jeden z 64 intervalů. Podrobně viz tabulka Tab.5.

4.2. DACLoReg

(WR, Base+0)

Tento registr obsahuje nižších 8 bitů dat D/A převodníku. Struktura registru:

D7	D6	D5	D4	D3	D2	D1	D0
DAC7	DAC6	DAC5	DAC4	DAC3	DAC2	DAC1	DAC0

4.3. DACHiReg

(WR, Base+1)

Tento registr obsahuje vyšších 8 bitů dat D/A převodníku. Struktura registru:

D7	D6	D5	D4	D3	D2	D1	D0
DAC15	DAC14	DAC13	DAC12	DAC11	DAC10	DAC9	DAC8

Pracovní kód D/A převodníku:

D/A převodník pracuje v přímém binárním kódu; hodnotě 0 odpovídá nulové (unipolární rozsahy) nebo maximální záporné napětí (bipolární rozsahy), resp. minimální proud, hodnotě 65535 pak maximální napětí nebo maximální proud. D/A převodník je po zapnutí nebo resetu počítače nastaven na hodnotu 0.

4.4. CWReg

(WR, Base+3)

Tento registr je určen pro nucené resetování řídicího mikropočítače (určeno pro systémový watchdog).

Struktura registru:

D7	D6	D5	D4	D3	D2	D1	D0
	RSRV						RST

RST

 registr pro nucený reset mikropočítače (aktivní v úrovni H)

RSRV

• rezerva

rev. 04.2001

4.5. StatusReg

(RD, Base+3)

Tento registr je určen pro poskytnutí informace o přenosu dat do D/A převodníku. Struktura registru:

D7	D6	D5	D4	D3	D2	D1	D0
BUSY		RSRV					RST

BUSY

 úrovní H je signalizován probíhající přenos dat (přenos dat je zahájen zápisem do DACHiReg a doba trvání je kratší než 100μs; v průběhu přenosu nesmí být modifikován obsah registrů DACLoReg a DACHiReg)

RST

• zpětné čtení bitu RST v registru CWReg

RSRV

• rezerva

4.6. DigInReg

(RD, Base+7)

Tento registr plní funkci prvního vstupního digitálního portu; význam jednotlivých bitů je zřejmý ze struktury registru a zapojení konektoru portu. Struktura registru:

D7	D6	D5	D4	D3	D2	D1	D0
DIN7	DIN6	DIN5	DIN4	DIN3	DIN2	DIN1	DIN0

5. Popis analogového výstupu

5.1. Úvod

Moduly PCA-1601 obsahují 1 konfigurovatelý analogový výstup; signály jsou umístěny na jednom konektoru DIL10.

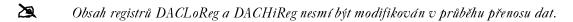
5.2. Konfigurace výstupu

Pro konfiguraci pracovního rozsahu je určena sada propojek, podrobně viz obrázek Obr.1 a Obr.2.

D/A převodník pracuje v přímém binárním kódu; hodnotě 0 odpovídá nulové (unipolární rozsahy) nebo záporné napětí (bipolární rozsahy), resp. minimální proud, hodnotě 65535 pak maximální napětí nebo maximální proud.

D/A převodník je po zapnutí nebo resetu počítače nastaven na hodnotu 0.

5.3. Programování D/A převodníku


D/A převodník je řízen mikropočítačem modulu; zápisem do registru DACHiReg je spuštěna sekvence přenosu dat z DAC registrů do vlastního D/A převodníku.

Popis činnosti programu PC:

- PC čeká na konec předcházejícího přenosu dat (StatusReg = 0)
- PC provede zápis do DACLoReg
- PC provede zápis doDACHiReg => dojde k zahájení přenosu dat do DAC

Popis činnosti mikropočítače modulu:

- mikropočítač čeká na zápis do DACHiReg
- StatusReg je nastaven na hodnotu 128
- mikropočítač přečte 16-bitová data a přenese je sériovou linkou do DAC
- StatusReg je nastaven na hodnotu 0

Přestože přenos dat je poměrně rychlý (pod 100μs), nemá smysl vzhledem k době ustálení výstupního signálu zvýšit četnost programování nad 500Hz. Pro změnu signálu v plném rozsahu a odchylku 0,1% je doba ustálení pod 3ms; k úplnému ustálení výstupního signálu D/A převodníku však dojde až po 10ms.

6. Popis digitálních vstupů

6.1. Úvod

Moduly PCA-1601 obsahují 8 vstupních kanálů; signály portu jsou umístěny na jednom konektoru DIL10.

6.2. Zapojení vstupů

Pro realizaci vstupů bylo využito obvodů technologie HCTMOS. Jejich výhodné vlastnosti (vysoká vstupní impedance a zanedbatelný vstupní proud, ochranné diody) byly využity pro přepěťovou ochranu do ±24V.

Protože klidový stav vstupů odpovídá logické úrovni H (ošetřeno rezistory $10k\Omega$ proti napětí +5V), lze je použít i pro připojení signálů typu "otevřený kolektor" nebo bezpotenciálních spínačů.

PCA-1601 Příloha II - tabulky

	SW1					
SW - 1	SW - 2	SW - 3	SW - 4	SW - 5	SW - 6	(Base)
ON	ON	ON	ON	ON	ON	200 _H
ON	ON	ON	ON	ON	OFF	208 _H
OFF	ON	ON	ON	ON	ON	300 _H
OFF	ON	ON	ON	ON	OFF	308 _H
OFF	OFF	OFF	OFF	OFF	ON	3F0 _H
OFF	OFF	OFF	OFF	OFF	OFF	3F8 _H

Tab.1. Volba bázové adresy. (adresa $300_{\rm H}$ nastavena od výrobce)

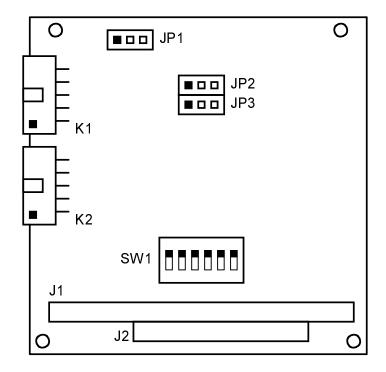
Počáteční adresa	Koncová adresa	I/O zařízení
200 _H	207 _H	adapter pro hry
278 _H	27F _H	2. tiskárna
2F8 _H	2FF _H	2. adapter asynchronní komunikace
300 _H	31F _H	prototypová deska
360 _H	36F _н	rezerva
378 _H	37F _н	1. tiskárna
380 _H	38F _н	synchronní komunikace SDLC
3A0 _H	3AF _H	synchronní komunikace BSC
3В0 _н	3BF _H	monochromatický display + tiskárna
3C0 _H	3CF _H	rezerva
3D0 _H	3DF _H	barevný display
3F0 _H	3F7 _H	řadič disket
3F8 _H	3FF _H	1. adapter asynchronní komunikace

Tab.2. Seznam standardních adres I/O zařízení.

PCA-1601 Příloha II - tabulky

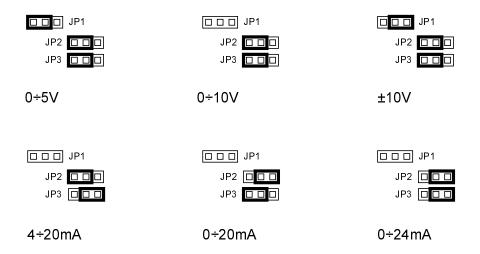
funkce	PIN	PIN	funkce
Analog. OUT (U)	D1	D2	AGND
Analog. OUT (I)	D3	D4	AGND
	D5	D6	AGND
	D7	D8	AGND
	D9	D10	AGND

Tab.3. Zapojení vývodů konektoru DIL10 - analogový výstup (K1).


funkce	PIN	PIN	funkce
Digit. IN 0	D1	D2	Digit. IN 1
Digit. IN 2	D3	D4	Digit. IN 3
Digit. IN 4	D5	D6	Digit. IN 5
Digit. IN 6	D7	D8	Digit. IN 7
DGND	D9	D10	+5V

Tab.4. Zapojení vývodů konektoru DIL10 - digitální port (K2).

Adresa	REG	ISTR
	WR	RD
Base+0	DACLoReg	
Base+1	DACHiReg	
Base+2		
Base+3	CWReg	StatusReg
Base+4		
Base+5		
Base+6		
Base+7		DigInReg


Tab.5. Struktura adresového prostoru.

PCA-1601 Příloha III - obrázky

- Obr.1. Obrázek modulu PCA-1601.
- K1 analogový výstup
- K2 vstupní digitální port
- Modul má standardně osazen konektor J1; konektor J2 může být doplněn po dohodě.

PCA-1601 Příloha III - obrázky

Obr.2. Konfigurace rozsahu analogového výstupu.

Obr.3. Rozmístění vývodů na konektoru DIL 10.